Detecting Correlation Structure of Stock Returns by Network Clustering

Takashi Isogai (Bank of Japan, JAIST) E-mail: takashi.isogai@boj.or.jp

Motivation: The correlation of returns is a key concept for portfolio risk management. We propose an approach to detect the high dimensional correlation structure of market-wide stock returns by network clustering for reducing portfolio risk (VaR, Expected Shortfall) with effective diversification of investment.

Method: GARCH filtering and a hierarchical network clustering with modularity maximization is combined to deal with the fat-tailness of return distribution and the high dimensional correlation structure.

Findings: Hierarchical groups are detected. The current sector classification is partially effective; stocks in some sectors are grouped almost together. The group properties are identified by classification tree analysis.

1. Correlation of fat-tail stock returns

Portfolio risk = Variance (\(r\)) + Covariance (\(r\))

Stock return feature: Fat tail and volatility clustering

Volatility of Nikkei by GARCH(1,1)

\[r_t = \sigma_z z_t \quad z_t \sim IID(0,1) \]

- Focus on covariance of \(z_t\), rather than \(r_t\)
- GARCH filtering to separate volatilities \(\sigma_t\) and i.i.d innovations \(z_t\) with correlation matrix \(P\)

Multivariate GARCH for stock returns \(i_t\)

- for over 1400 Stocks, listed at Tokyo Stock Exchange, 1st section

\[
\begin{bmatrix}
\sigma_{i,t}^2 \\
0 & \sigma_{j,t}^2
\end{bmatrix}
\begin{bmatrix}
z_{i,t} \\
z_{j,t}
\end{bmatrix} = \begin{bmatrix}
\sigma_{i,j,t} \\
0
\end{bmatrix} \Rightarrow Z_t \text{ has correlation } P_t
\]

- Hard to estimate parameters due to high dimensionality
- Exclude cross effects (no volatility spillovers, diagonal specifications)

Vector GARCH(1,1) volatility equations:

\[
\begin{align*}
\sigma_{i,t}^2 &= \alpha_0 + \alpha_1 r_{i,t-1}^2 + \gamma_1 \sigma_{i,t-1}^2 + \beta_1 \sigma_{i,t-1}^2 \\
\sigma_{j,t}^2 &= \alpha_2 + \beta_2 \sigma_{j,t-1}^2 + \beta_3 \sigma_{j,t-1}^2
\end{align*}
\]

- Simplify time varying \(P_t\) as constant over time \(P\)
- CCC-GARCH (Bollerslev(1990)) cc: constant conditional correlation

2. Clustering stock returns

Current 33 sector classification: the best grouping?

Heat map of correlation matrix of stock returns: corr(\(r_t\), \(r_j\))

- Find more data-oriented grouping using correlation matrix \(P\) = \(\{P_i\}\)
- Correlation matrix \(P_i\) = adjacent matrix \(A_i\) = Network clustering
 - Divise, hierarchical
 - Modularity maximization + spectral clustering (Newman(2006))
- Resolution limit problem… work around by recursive clustering; simple but it works.

3. Building hierarchical group structure

Macro view of clustering

Understanding group properties
- how stocks are divided into groups at each level; which factor plays a key role in determining the subdivision at every layer.
- shared properties of a group reflect investors’ views of those stocks.
- merits: forecast group ID of newly listed stocks, stocks with limited price data, etc.

Classification tree at every hierarchy
- TOPX beta, size, PBR (Fama and French), %/rate beta, overseas sales, sectors, ...
- TOPX beta, size, PBR (Fama and French), %/rate beta, overseas sales, sectors, ...
- TOPX beta, size, PBR (Fama and French), %/rate beta, overseas sales, sectors, ...

** Conditional sequential tree model for stock classification**
- e.g., B1 – G27: L1 Tree * L2 Tree * L3 Tree * L4 tree
- merits: forecast group ID of newly listed stocks, stocks with limited price data, etc.

4. Further topics

- Quantify risk (VaR, ES) reduction effects by random portfolio simulation
- Multivariate GARCH with non-diagonal specification
- Market-wide analysis by reduced size of GARCH models
- Volatility spillovers and dynamic conditional correlation (DCC GARCH) ...

References

Views expressed here are those of the author and do not necessarily reflect the official views of the Bank of Japan.